Production Operations Management Portfolio (POM)
Curtis Hubbard Jr.
MGNT 3185, M-F 12:00p.m.-01:50p.m.

## Table of Contents

I. Computer Lab Assignment \#1
a. Cover Page
b. Explanatory Paragraph
c. Appendix A
II. Computer Lab Assignment \#2
a. Cover Page
b. Explanatory Paragraph
c. Appendix A
III. Computer Lab Assignment \#3
a. Cover Page
b. Explanatory Paragraph
c. Appendix A
IV. Computer Lab Assignment \#4
a. Cover Page
b. Explanatory Paragraph
c. Appendix A
V. Computer Lab Assignment \#5a. Cover Page
b. Explanatory Paragraph
c. Appendix A
VI. Computer Lab Assignment \#6
a. Cover Page
b. Explanatory Paragraph
c. Appendix A
VII. Computer Lab Assignment \#7
a. Cover Page
b. Explanatory Paragraph
c. Appendix A
VIII. Computer Lab Assignment \#8
a. Cover Page
b. Explanatory Paragraph
c. Appendix A

## Computer Lab Assignment \#1

 Curtis Hubbard Jr.
## Explanatory Paragraph for Computer Lab Assignment \#1

Using the Management Scientists software a 3-month Simple Moving Average (SMA) forecast and an Exponential Smoothing (ES) forecast were conducted. The Mean Squared Error (MSE) for ES was 329.81 while the MSE for SMA was 296.11. The SMA is the superior forecasting technique, because it has a lower MSE. The forecast for period 9 using the SMA forecasting technique was 758.67 .
TIME PERIOD

$==========$ | TIME SERIES VALUE |
| :---: |
| $===============$ |$\quad$| FORECAST |
| :--- |
| $========$ |$\quad$| FORECAST ERROR |
| :--- |
| $============$ |

THE MEAN SQUARE ERROR ..... $1,702.33$
THE FORECAST FOR PERIOD 9 ..... 729.50

Computer Lab Assignment \#2 Curtis Hubbard Jr.

MGNT 3185, MW 06:00-07:15p.m.

## Explanatory Paragraph for Computer Lab Assignment \#2

$$
\mathrm{F}_{\mathrm{t}}=143.8+1.945 \mathrm{t}
$$

Using the Management Scientist software a linear trend equation was developed. If no units were sold then big T would equal 143.8 units sold. If little t were equal to 18 , then big T would equal 178.81 units sold $(143.8+1.945(18)=178.81$ units sold $)$. The forecast for period 20 is 182.70 units sold.

## FORECASTING WITH LINEAR TREND

THE LINEAR TREND EQUATION:

$$
T=150.067+0.697 t
$$

where $T=$ trend value of the time series in period $t$

| TIME PERIOD | TIME SERIES VALUE | FORECAST | FORECAST ERROR |
| :---: | :---: | :---: | :---: |
| 1 | 166 | 150.76 | 15.24 |
| 2 | 148 | 151.46 | -3.46 |
| 3 | 150 | 152.16 | -2.16 |
| 4 | 147 | 152.86 | -5.86 |
| 5 | 155 | 153.55 | 1.45 |
| 6 | 144 | 154.25 | -10.25 |
| 7 | 155 | 154.95 | 0.05 |
| 8 | 146 | 155.64 | -9.64 |
| 9 | 150 | 156.34 | -6.34 |
| 10 | 178 | 157.04 | 20.96 |


| THE MEAN SQUARE ERROR | 96.28 |
| :--- | :--- | ---: |
| THE FORECAST FOR PERIOD 11 | 157.73 |
| THE FORECAST FOR PERIOD 12 | 158.43 |
| THE FORECAST FOR PERIOD 13 | 159.13 |
| THE FORECAST FOR PERIOD 14 | 159.83 |
| THE FORECAST FOR PERIOD 15 | 160.52 |
| THE FORECAST FOR PERIOD 16 | 161.22 |
| THE FORECAST FOR PERIOD 17 | 161.92 |
| THE FORECAST FOR PERIOD 18 | 162.61 |
| THE FORECAST FOR PERIOD 19 | 163.31 |
| THE FORECAST FOR PERIOD 20 | 164.01 |

## Computer Lab Assignment \#3

 Curtis Hubbard Jr.MGNT 3185, MW 06:00-07:15p.m.

## Explanatory Paragraph for Computer Lab Assignment \#3

$$
\mathrm{Y}=4.517+1.627 \mathrm{X}
$$

A regression analysis was conducted to determine if the bus and trolley ridership demand has any relationship to the number of tourists visiting TyTy, Georgia on an annual basis. The significant predictor of the omnibus F-test is .001 . The coefficient of determinants $\left(r^{2}\right)$ is .821 . This confirms that approximately $82 \%$ of the variability in the dependent values can be determined by the independent variable. The coefficients of correlation is .906 , indicating that there will be a strong positive relationship between the two variables. If there are no tourists the predicted ridership will be 4.517. If 11 million people visit the city the predicted ridership will be approximately $17,897,005$.

```
DECISION ANALYSIS
```

*****************
YOU HAVE INPUT THE FOLLOWING PAYOFF TABLE:
*****************************************

|  | STATES | NATURE |
| :---: | :---: | :---: |
| DECISION | 1 | 2 |
| ******** | ****** | ****** |
| 1 | 220000 | -18000 |
| 2 | 116000 | -21500 |
| 3 | 0 | 0 |

PROBABILITIES

| OF STATES 0.300 | 0.700 |
| :--- | :--- | :--- |

## DECISION RECOMMENDATION

***********************

USING THE EXPECTED VALUE CRITERION

| DECISION | CRITERION | RECOMMENDED |
| :---: | :---: | :---: |
| ALTERNATIVE |  |  |
| $\star * * * * * * * * * *$ |  |  | | VALUE |
| :---: |
| 1 |

Computer Lab Assignment \#4 Curtis Hubbard Jr.

MGNT 3185, MW 06:00-07:15p.m.

## Explanatory Paragraph for Computer Lab Assignment \#4

Using The Management Scientist a decision analysis was conducted for the optimistic, conservative, regret and Expected Value with Perfect Information (EVPI) approaches. The optimistic approach is the best outcome, because it has the highest payoff with a value of $\$ 300,000.00$. The decision is to construct a large plant in another city. The EVPI is $\$ 68,000.00$.

```
DECISION ANALYSIS
```

*****************
YOU HAVE INPUT THE FOLLOWING PAYOFF TABLE:
*****************************************

|  | STATES OF NATURE |  |
| :---: | :---: | :---: |
| DECISION <br> $* * * * * * * *$ | 1 <br> $* * * *$ | $\star * * * * *$ |
| 1 | 220000 | -18000 |
| 2 | 116000 | -21500 |
| 3 | 0 | 0 |

DECISION RECOMMENDATION
$\star \star \star \star * * * * * * * * * * * * * * * * * * *$

USING THE OPTIMISTIC CRITERION

| DECISION | CRITERION | RECOMMENDED |
| :---: | :---: | :---: |
| ALTERNATIVE |  |  |
| $* * * * * * * * * * *$ |  |  | | VALUE |
| :---: |
| 1 |

Computer Lab Assignment \#5

## Curtis Hubbard Jr.

MGNT 3185, MW 06:00-07:15p.m.

## Explanatory Paragraph for Computer Lab Assignment \#5

Using The Management Scientist a decision analysis was conducted for the optimistic, conservative and regret approaches. The decision is to hire and train two new workers, because the conservative approach has the highest payoff with a value $\$ 60,000.00$. The costs under the conservative approach are $\$ 75,000.00$ to reassign present staff, $\$ 60,000.00$ to hire and train two new workers, and $\$ 94,000.00$ to redesign current practices. The costs under the optimistic approach are $\$ 50,000.00$ to reassign present staff, $\$ 50,000.00$ to hire and train two new workers, and $\$ 42,000.00$ to redesign current practices.

YOU HAVE INPUT THE FOLLOWING PAYOFF TABLE:


|  |  | STATES OF NATURE |  |
| :---: | :---: | :---: | :---: |
| DECISION | 1 | 2 | 3 |
| ******** | ****** | ****** | ****** |
| 1 | 50 | 70 | 87 |
| 2 | 62 | 65 | 78 |
| 3 | 43 | 55 | 94 |

DECISION RECOMMENDATION
$\star \star \star \star * * * * * * * * * * * * * * * * * * *$

USING THE OPTIMISTIC CRITERION

| DECISION | CRITERION | RECOMMENDED |
| :---: | :---: | :---: |
| ALTERNATIVE | VALUE | DECISION |
| $* * * * * * * * * *$ | $* * * * * * * *$ | $* * * * * * * *$ |

$1 \quad 50.00$
262.00
$3 \quad 43.00$
YES

YOU HAVE INPUT THE FOLLOWING PAYOFF TABLE:
$\star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$

|  |  | STATES OF NATURE |  |
| :---: | :---: | :---: | :---: |
| DECISION | 1 | 2 | 3 |
| ******** | ****** | ****** | ****** |
| 1 | 50 | 70 | 87 |
| 2 | 62 | 65 | 78 |
| 3 | 43 | 55 | 94 |

DECISION RECOMMENDATION
$\star \star \star \star \star * * * * * * * * * * * * * * * * * *$

USING THE CONSERVATIVE CRITERION

| DECISION | CRITERION |
| :---: | :---: | :---: |
| ALTERNATIVE |  |
| $* * * * * * * * * * *$ |  | | VALUE |
| :---: |
| 1 |

YOU HAVE INPUT THE FOLLOWING PAYOFF TABLE:
$\star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$

|  |  | STATES OF NATURE |  |
| :---: | :---: | :---: | :---: |
| DECISION | 1 | 2 | 3 |
| ******** | ****** | ****** | ****** |
| 1 | 50 | 70 | 87 |
| 2 | 62 | 65 | 78 |
| 3 | 43 | 55 | 94 |

DECISION RECOMMENDATION
$\star * * * * * * * * * * * * * * * * * * * * * *$

USING THE MINIMAX REGRET CRITERION

| DECISION | CRITERION | RECOMMENDED |
| :---: | :---: | :---: |
| ALTERNATIVE |  |  |
| }{$* * * * * * * *$} | $* * * * * * * * * * *$ |  |
|  | 15.00 | YES |
|  | 19.00 |  |
|  | 16.00 |  |

Computer Lab Assignment \#6 Curtis Hubbard Jr.

MGNT 3185, MW 06:00-07:15p.m.

## Explanatory Paragraph for Computer Lab Assignment \#6

Using The Management Scientist software, the optimal solution for the maximization model was standard golf bag $(S)=538.418$ hours and deluxe golf bag $(D)=253.107$ hours with an objective function value of 7662.147 . Reduced Costs values for both decision variables were zero, indicating that the variable had already attained a positive value in the optimal solution. With respect to Slack/Surplus, Constraint 2 had 120.712 units of excess capacity while Constraint 4 had 17.881units of Surplus. Constraints 1 and 3 had zero Slack and zero Surplus, respectively. Constraint 1 had a Dual Price of 4.331, indicating that for each additional one-unit increase in the Right Hand Side (RHS) $\$ 4.33$ would be added to the value of the objective function. Furthermore, Constraint 3 had a Dual Price of 6.968 , indicating that an additional oneunit increase in the RHS value of Constraint 4 would result in a $\$ 6.97$ increase in the value of the objective function.

For S, the optimal solution will hold as long as its value is between 6.300 and 13.433. For D, the optimal solution will hold as long as its value is between 6.700 and 14.286. The RHS value for Constraints 1 and 3 will remain optimal as long as their values are between 495.600 to 681.885 and 581.400 to 708.000 , respectively. Finally, the RHS values for Constraints 2 and 4 will remain optimal as long as their values are between 479.288 to positive infinity and 117.119 to positive infinity to 14.00 , respectively.

## LINEAR PROGRAMMING PROBLEM

MAX $10 \mathrm{X} 1+9 \mathrm{X} 2$
S.T.
1). $7 \mathrm{X} 1+1 \mathrm{X} 2<630$
2) $.5 \times 1+.8333 \times 2<600$
3) $1 \times 1+.6666 \times 2<708$
4) . $1 \times 1+.2500 \times 2<135$

## OPTIMAL SOLUTION



OBJECTIVE COEFFICIENT RANGES

| Variable | Lower Limit | Current Value | Upper Limit |
| :---: | :---: | :---: | :---: |
| X1 | 6.3000 | 10.0000 | 13.5014 |
| X2 | 6.6660 | 9.0000 | 14.2857 |

RIGHT HAND SIDE RANGES

| Constraint | Lower Limit |
| :---: | ---: |
| ---------------------195.6000 |  |
| 1 | 479.9890 |
| 2 | 579.9720 |
| 3 | 116.9976 |


| Current Value | Upper Limit |
| ---: | ---: |
| ----------------------- | 682.3732 |
| 630.0000 | No Upper Limit |
| 600.0000 | 900.0000 |
| 708.0000 | No Upper Limit |

Computer Lab Assignment \#7 Curtis Hubbard Jr.

MGNT 3185, MW 06:00-07:15p.m.

## Explanatory Paragraph for Computer Lab Assignment \#7

Using the Management Scientist software, the economic order quantity (EOQ) for the TyTy Beverage Company is 663.32 . This value also reflects the maximum inventory level. When the quantity of inventory reaches $\$ 583.73$ the total annual cost is minimized. The total cost is equivalent to the sum of the annual inventory holding cost (\$291.86) and the annual ordering cost (\$291.86). TyTy Georgia Beverage Company has a cycle time of 27.14 days; this is the number of days before the company has to reorder. The company operates 360 days out of the year and orders 13.27 times within the operating period. When the on hand inventory drops below 146.67 the TyTy Beverage Company has to reorder more products. The average inventory level is half the EOQ and has a value of 331.66 .
INVENTORY MODEL
***************
ECONOMIC ORDER QUANTITY
************************
YOU HAVE INPUT THE FOLLOWING DATA:
**********************************
ANNUAL DEMAND $=3900$ UNITS PER YEAR
ORDERING COST = \$20 PER ORDER
INVENTORY HOLDING COST:
A. ANNUAL INVENTORY CARRYING CHARGE = 11.0\%
B. COST PER UNIT = \$ 4 PER UNIT
WORKING DAYS PER YEAR = 360 DAYS
LEAD TIME FOR A NEW ORDER $=4$ DAYS
INVENTORY POLICY
$\star \star \star \star \star \star * * * * * * * * * *$
OPTIMAL ORDER QUANTITY ..... 595.44
ANNUAL INVENTORY HOLDING COST ..... \$131.00
ANNUAL ORDERING COST ..... $\$ 131.00$
TOTAL ANNUAL COST ..... $\$ 261.99$
MAXIMUM INVENTORY LEVEL ..... 595.44
AVERAGE INVENTORY LEVEL ..... 297.72
REORDER POINT ..... 43.33
NUMBER OF ORDERS PER YEAR ..... 6.55
CYCLE TIME (DAYS) ..... 54.96

Computer Lab Assignment \#8 Curtis Hubbard Jr.

MGNT 3185, MW 06:00-07:15p.m.

## Explanatory Paragraph for Computer Lab Assignment \#8

Using the Management Scientist software, the economic order quantity is 2,500.00; this is the point that the ordering and holding cost are at their lowest. The annual cost is $\$ 31,229.70$, which is the sum of the annual ordering and holding cost. The average inventory level is half of the optimal order quantity and has a value of $1,250.00$. The cycle time is 96.15 days between orders. When inventory drops to 130.00 the company will order more supplies. The company has 250 working days a year and makes 2.60 orders per year.
INVENTORY MODEL
$\star \star \star \star \star \star \star \star * * * * * * *$
ECONOMIC ORDER QUANTITY WITH QUANTITY DISCOUNTS
YOU HAVE INPUT THE FOLLOWING DATA:
**********************************
QUANTITY DISCOUNT INFORMATION
CATEGORY UNIT COST MINIMUM QUANTITY
1 ..... $\$ 5.00$ ..... 0
$2 \quad \$ 4.85$ ..... 1000
3 \$4.75 ..... 2500
ANNUAL DEMAND $=6500$ UNITS PER YEAR
ORDERING COST = \$47 PER ORDER
ANNUAL INVENTORY CARRYING CHARGE = 21
WORKING DAYS PER YEAR = 250 DAYS
LEAD TIME FOR A NEW ORDER = 5 DAYS
INVENTORY POLICY
****************
OPTIMAL ORDER QUANTITY ..... $2,500.00$
ANNUAL INVENTORY HOLDING COST ..... \$1,246.88
ANNUAL ORDERING COST ..... \$122. 20
ANNUAL PURCHASE COST ..... $\$ 30,875.00$
TOTAL ANNUAL COST ..... \$32,244.08
MAXIMUM INVENTORY LEVEL ..... $2,500.00$
AVERAGE INVENTORY LEVEL ..... $1,250.00$
REORDER POINT ..... 130.00
NUMBER OF ORDERS PER YEAR ..... 2.6
CYCLE TIME (DAYS) ..... 96.15

